Glycogen synthase kinase-3 inhibition reduces ischemic cerebral damage, restores impaired mitochondrial biogenesis and prevents ROS production.
نویسندگان
چکیده
This study was designed to test the hypothesis that improved mitochondrial biogenesis could help reducing ischemic cerebral injury. We found that levels of proliferator-activated receptor γ coactivator 1α and nuclear respiratory factor-1, mitochondrial DNA content and other markers of mitochondrial biogenesis and function were reduced in primary mouse cortical neurons under oxygen-glucose deprivation (OGD). The glycogen synthase kinase-3 (GSK-3) inhibitor SB216763 activated an efficient mitochondrial biogenesis program in control cortical neurons and counteracted the OGD-mediated mitochondrial biogenesis impairment. This was accompanied by the activation of an antioxidant response that reduced mitochondrial reactive oxygen species generation and ischemic neuronal damage. The in vitro effects of SB216763 were mimicked by two other structurally unrelated GSK-3 inhibitors. The protective effects of SB216763 on OGD-mediated neuronal damage were abolished in the presence of diverse mitochondrial inhibitors. Finally, when systemically administered in vivo, SB216763 reduced the infarct size and recovered the loss of mitochondrial DNA in mice subjected to permanent middle cerebral artery occlusion. We conclude that GSK-3 inhibition by SB216763 might pave the way of novel promising therapies aimed at stimulating the renewal of functional mitochondria and reducing reactive oxygen species-mediated damage in ischemic stroke.
منابع مشابه
Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats
Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...
متن کاملRole of Glycogen Synthase Kinase-3 in Cardioprotection
Limitation of infarct size by ischemic/pharmacological preand postconditioning involves activation of a complex set of cell-signaling pathways. Multiple lines of evidence implicate the mitochondrial permeability transition pore (mPTP) as a key end effector of ischemic/pharmacological preand postconditioning. Increasing the ROS threshold for mPTP induction enhances the resistance of cardiomyocyt...
متن کاملGlycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore.
Environmental stresses converge on the mitochondria that can trigger or inhibit cell death. Excitable, postmitotic cells, in response to sublethal noxious stress, engage mechanisms that afford protection from subsequent insults. We show that reoxygenation after prolonged hypoxia reduces the reactive oxygen species (ROS) threshold for the mitochondrial permeability transition (MPT) in cardiomyoc...
متن کاملDrp1-Mediated Mitochondrial Abnormalities Link to Synaptic Injury in Diabetes Model
Diabetes has adverse effects on the brain, especially the hippocampus, which is particularly susceptible to synaptic injury and cognitive dysfunction. The underlying mechanisms and strategies to rescue such injury and dysfunction are not well understood. Using a mouse model of type 2 diabetes (db/db mice) and a human neuronal cell line treated with high concentration of glucose, we demonstrate ...
متن کاملGlycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation.
Inhibition of glycogen synthase kinase (GSK)-3 reduces ischemia/reperfusion injury by mechanisms that involve the mitochondria. The goal of this study was to explore possible molecular targets and mechanistic basis of this cardioprotective effect. In perfused rat hearts, treatment with GSK inhibitors before ischemia significantly improved recovery of function. To assess the effect of GSK inhibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurochemistry
دوره 116 6 شماره
صفحات -
تاریخ انتشار 2011